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Abstract

In this article I’m defining hodpiece of a point in a triangle and I
study its properties. Some additional properties of X25 (a special case
of a hodpiece) are presented, and I also prove that the fixed point of
this operation is impossible to construct using only straightedge and
compass.

1 Introduction

Isogonal conjugate of a line is a conic – this simple fact is the foundation of
this article. On this base I define hodpiece1 of a point in a given triangle.
The third section contains the proof of its existence. Then I examine its
properties in particular cases. Considering our construction for medial lines
of a triangle we obtain the point X25, whose some of the other properties are
shown in the fourth chapter. Hodpieces of points on the circumcircle turns
out to be the centroid of the triangle. At the end I prove that there exists a
unique point which is its own hodpiece, and that it’s impossible to construct
it in a classical way, that is with straightedge and compass.

1I have used physicians’ strategy to steal neologisms from Joyce if necessary2

2"has the most conical hodpiece of confusianist heronim", Finnegans Wake, James
Joyce, page 131
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2 Preliminaries

2.1 Notation
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Let ABC be a triangle. We introduce following notation:

• K, L, M – midpoints of sides

• P – any point

• D, E, F – intersections of lines AP , BP , CP with opposite sides of a
triangle

• O – circumcenter of ABC

• H – orthocenter of ABC

<)XY Z will denote directed angle between Y X and Y Z.

Warning. In the fourth chapter some points will have other meaning, re-
spective notation will be given at the beginning of that chapter.

In a given triangle it’s possible to define many different triangle centers
(e.g. centroid or orthocenter). Such points are gathered in Encyclopedia of
Triangle Centers [2]; we will denote n-th of those centers as Xn.
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2.2 Isogonal conjugate

We will say that points P and Q are isogonally conjugated in triangle ABC,
if <)BAP = <)QAC, <)CBP = <)QBA and <)ACP = <)QCB. Of course
this is a symmetric relation.

B C

A

P

Q

Theorem 2.1. If P does not lie on lines containing sides of the triangle, it
has an isogonal conjugate.

Proof. Let PA, PB, PC be reflections of P with respect to sides of the triangle.
Denote circumcenter of PAPBPC as Q. Then PCA = PBA (= PA) and
QPC = QPB, so triangles PCAQ and QAPB are congruent. In particular
<)PCAQ = <)QAPB. Since

2<)BAP +<)PAQ = <)PCAB +<)BAP +<)PAQ = <)PCAQ

and

2<)QAC +<)PAQ = <)QAC +<)PAC = <)QAC +<)CAPB = <)QAPB

we finally obtain <)BAP = <)QAC. We derive two remaining equalities in a
similar way.
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Warning. If points PA, PB, PC are collinear (which happens exactly when
P lies on a circumcircle of ABC3), point Q will be direction orthogonal to
line passing through them. Then both A and Q lie on perpendicular bisector
of PBPC , so equality <)PCAQ = <)QAPB is true. The rest of reasoning stays
the same.

Isogonal conjugate of P will be denoted by P ∗.

Example. <)BAH = 90° − <)CBA = 90° − 1
2
<)COA = <)OAC, so H and

O are isogonal conjugates of each other.

C

A

H O

B

Example. Let M be the midpoint of side BC. Reflect A through M ob-
taining A′. Moreover let tangents to circumcircle in B and C intersect in D.
Then

−<)A′CA = <)BAC = <)BCD

3It will be the Steiner line of P
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and in a similar way we find analogous equality for angles with vertex B, so
A′ and D are isogonally conjugate. In particular AD is a symmedian (i.e.
line isogonally conjugate to median line) in angle BAC.

D A′

A

B
C

2.3 Barycentric coordinates

If for some P and real numbers pA, pB, pC (not all equal to zero) identity

pA
−→
PA+ pB

−−→
PB + pC

−−→
PC =

−→
0

holds, we say that [pA : pB : pC ] are barycentric coordinates of P in ABC.
Of course for any nonzero λ if [pA : pB : pC ] are barycentric coordinates of P ,
then so are [λpA : λpB : λpC ]. Any point P has some barycentric coordinates,
unique up to constant, since

−→
PA,

−−→
PB,

−−→
PC span a space of dimension two,

which means that kernel of map R3 3 (u, v, w) 7→ u
−→
PA + v

−−→
PB + w

−−→
PC has

dimension equal to one. Barycentric coordinates can be interpreted as such
masses pA, pB, pC , that after putting them in A, B, C we will get system of
objects with center of mass in P ; this shows that these coordinates uniquely
determine a point, so we will denote P ∼ [pA : pB : pC ] if [pA : pB : pC ] are
barycentric coordinates of P . This also implies that barycentric coordinates
of any point on a line PQ are linear combination of coordinates of P and Q.

In this interpretation we supposed pA + pB + pC 6= 0, since only then
respective system will have a center of mass. It turns out that points with
sum of coordinates equal to zero are points in infinity.
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Barycentric coordinates are especially useful in problems concerning tri-
angle geometry, since they allow us to describe objects connected to it in an
easy way. For example, [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] are triangle’s vertices
A, B, C, while [1 : 1 : 1] is the centroid of ABC.

Lemma 2.1. Let P ∼ [pA : pB : pC ], and let lines AP , BC intersect in D.
Then

−−→
BD
−−→
DC

=
pC
pB

Proof. Observe D ∼ [0 : pB : pC ] – indeed, this coordinates are linear
combinations of both coordinates of A and D, and also of B and C. From
the definition

pB
−−→
DB + pC

−−→
DC = 0

which is equivalent to thesis.

This observation is enough to prove both Ceva’s and Menelaus’s theorem.
It shows equivalency of barycentric coordinates and segments’ proportions,
which we will be often using.

Lemma 2.2. Isogonal conjugate of point P ∼ [pA : pB : pC ] has barycentric
coordinates [

a2

pA
:
b2

pB
:
c2

pC

]
Proof. Let Q = P ∗ and let AP , AQ intersect BC respectively in D, E. We
want to prove

BD

DC
· BE
EC

=
c2

b2

Let θ = <)BAD. From law of sines for BAD and DAC we have

BD

sin θ
=

c

sin<)ADB

and

CD

sin(α− θ)
=

b

sin<)CDA

Of course sin<)ADB = sin<)CDA, so dividing first equation by the
second one, we get
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BD

CD
· sin(α− θ)

sin θ
=
c

b

Analogously

BE

CE
· sin θ

sin(α− θ)
=
c

b

Multiplying both equations yields thesis.

θ θ

B CD E

A

QP

Thus a line described by the equation κxA +λxB +µxC = 0 has isogonal
conjugate with equation

κa2

xA
+
λb2

xB
+
µc2

xC
= 0

which after multiplying by xAxBxC becomes

κ′xBxC + λ′xCxA + µ′xAxB = 0

for some κ′, λ′, µ′. Thus isogonal conjugate of a line is a curve of degree
two – in barycentric coordinates, so in order to show this is a conic, we need
the following lemma:

Lemma 2.3. Degree of an algebraic curve in barycentric coordinates is the
same as in Cartesian coordinates.

Proof. Take A′ = (1, 0), B′ = (0, 1), C ′ = (0, 0). Observe that point P =
(x, y) in Cartesian coordinates has barycentric coordinates [x : y : 1− x− y]
in triangle A′B′C ′, since
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−→
AP ·x+

−−→
BP ·y+

−−→
CP ·(1−x−y) =

−−−−−−→
(x− 1, y)·x+

−−−−−−→
(x, y − 1)·y+

−−−→
(x, y)·(1−x−y) = 0

Let f(x, y) will be equation of the curve in Cartesian coordinates, while
G(x, y, z) in barycentrics. Then there exists such homogeneous polynomial
F (x, y, z) that F (x, y, 1 − x − y) = f(x, y) (we multiply each monomial of
lower degree in f by x + y + z in an appropriate power), and affine trans-
formation mapping A′B′C ′ onto ABC will turn F into G, thus since affine
transformations are linear, in particular we have degG = degF = deg f .

Therefore isogonal conjugate of a line is a conic passing through vertices
of the triangle.

Example. We know that incenter is its own isogonal conjugate. Thus it
must have property that xA = a2

xA
, so xA = a and coordinates of this point

are [a : b : c]. Excenters too have this property (but they are lying outside
of the triangle), so they will have additional minus on respective coordinate.

B C

A

Example. Isogonal conjugate of line at infinity is the circumcircle. Since
equation of this line is xA + xB + xC = 0, equation of circumcircle of ABC
is

a2xBxC + b2xCxA + c2xAxB = 0
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Example. We will prove that any hyperbola passing through A, B, C, H
is rectangular (ie. its asymptotes are perpendicular).

Its isogonal conjugate is a line passing through O. Let it intersect cir-
cumcircle in X and Y . Then X∗ and Y ∗ are directions of this hyperbola’s
asymptotes. Furthermore, <)XAY is right, as an angle subtended on a di-
ameter. Therefore <)XAY = <)X∗AY ∗ = 90°, and this hyperbola is indeed
rectangular.

3 Main construction

Choose a point P . Let AP , BP , CP intersect opposite sides in D, E, F .
Isogonal conjugate of line EF is some conic; let SA be its center. We define
SB and SC in a similar way.

Theorem 3.1. Lines ASA, BSB, CSC concur.

Definition. We call this intersection the hodpiece of point P , denoted by
H(P ).

We will divide the proof in several steps:

Lemma 3.1. There are four points A, B, C, D given in the plane, where D
lies inside triangle ABC (in particular no four of these points are collinear).

9



Then there exists affine transformation f such that f(D) is orthocenter of
triangles with vertices f(A), f(B), f(C).

Proof. Let D have barycentric coordinates [dA : dB : dC ] in ABC. These
coordinates are invariant in f , since affine transformations preserve propor-
tions. Thus we want to transform ABC into a triangle with such angles α,
β, γ that

[dA : dB : dC ] = [tanα : tanβ : tan γ],

since these are exactly barycentric coordinates of the orthocenter. Thus we
want for some λ that 

α = arctanλdA

β = arctanλdB

γ = arctanλdC

α+ β + γ = π

Observe that for λ = 0 also α + β + γ = 0, while for λ → ∞ this sum
tends to 3

2π. Therefore for some λ we will get exactly π.

Lemma 3.2 (Ceva Nest). Let points D, E, F lie on respective sides of
triangle ABC, while G, H, I on sides of DEF in such a way, that AD,
BE, CF concur, as well as DG, EH and FI. Then also lines AG, BH, CI
concur.

B CD

F

A

EG

H

I

Proof. Proof can be found in [3].

Lemma 3.3. Let points from A to I be situated as in the previous lemma.
Let CH intersect with BI in X, AI with CG in Y , and BG with AH in Z.
Then lines DX, EY and FZ concur.
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Proof. From Lemma 3.2 AG, BH and CI concur, denote the point of con-
currence as P . Then (P,X), (H, I), (B,C) are opposite pairs of vertices of
complete quadrilateral, so from Dual Desargues Involution Theorem ([4]) for
point D there exists involution sending DP → DX, DH → DI, DB → DC.

Denote intersection of AD, BE, CF as Q. Since statement of the lemma
is preserved in projective transformations, we may assume without loss of
generality that Q lies inside ABC, and from Lemma 3.1 after using appro-
priate affine transformation, we may suppose that Q is orthocenter of ABC.
Then from properties of orthic triangle line DB is external bisector of angle
<)FDE, so involution from the last paragraph must be isogonal conjugation
in <)FDE (since projective transformation is determined by its four (or even
three) values, and we know that pairs (DH,DI), (DB,DC) are isogonally
conjugated in this angle). Therefore DP and DX are also isogonally conju-
gated. Thus DX, EY , FZ pass through isogonal conjugate of P in DEF
(if P lies on any side of the triangle, thesis is trivial, so we may assume that
this isogonal conjugate indeed exists).

Lemma 3.4. For some points QA, QB, QC such that points A, B, C lie on
sides of QAQBQC , we have SA = QBM ∩QCL (and symmetric equalities).

Proof. Denote isogonal conjugate of EF as SA. Let PA (analogously PB, PC)
will be such point, that (P, PA;A,D) = −1, and let Q, QA, QB, QC be isogo-
nal conjugates of respective points P . We want to prove, that PBPC , EF and
BC concur: let T be intersection of EF with BC, then (T,D;B,C) = −1
so projecting from A to CP we have, that PC lies on AT , analogously for
PB.

Let point X move along the line EF towards T . Then point X∗ moves
along SA towards A, where line AX tends to PBPC , so AX∗ to QBQC . Thus
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QBQC is tangent in A to SA. So are BQ and CQ. This means that polar
lines of points Q, QB, QC are respectively BC, AB, AC.

Consider point in infinity of line AC and denote it as W . Its polar line
on one hand must pass through L, since (W,L;A,C) = −1, on the other
hand it has to pass through pole of line AC, which is QC . Moreover pole of
line of infinity is the center of conic, ie. SA. Using similar argument for line
AB we get that SA is the intersection of QBM with QCL. Using Lemma
3.3 concludes the proof of Theorem 3.1.
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We may also describe barycentric coordinates of H(P ) in relation with
P .

3.1 Barycentric coordinates of hodpiece

Let P ∼ [pA : pB : pC ], Q ∼ [qA : qB : qC ]. Then QA ∼ [−qA : qB : qC ],
analogously QB i QC . Denote s = qA + qB + qC and take S′A ∼ [qAs :
qB(s− 2qC) : qC(s− 2qB)]. Observe, that writing L as 2qC · [qA : 0 : qA] and
QC as (s − 2qC)[qA : qB : −qC ], and then summing these coordinates, we
will get


(2qC + s− 2qC)qA = sqA

(s− 2qC)qB

2qAqC − (s− 2qC)qC = qC(2qA + 2qC − s) = qC(s− 2qB)

so exactly coordinates of S′A. Therefore S
′
A lies on line QCL and similarly

on QBM , thus S′A = SA. Then point

H(P ) :=

[
qA

s− 2qA
:

qB
s− 2qB

:
qC

s− 2qC

]
lies on lines ASA, BSB, CSC , so this is H(P ). Equivalently we can write

it as

[
a2pBpC

b2pCpA + c2pApB − a2pBpC
:

b2pCpA
c2pApB + a2pBpC − b2pCpA

:

:
c2pCpA

c2pApB + a2pBpC − b2pCpA

]

4 Center X25

This section is devoted to the point we would get starting from medial lines
of the triangle, ie. H(X2). Theorem 4.1 proves this and other properties of
this point.

Let K, L, M be sides’ midpoints, P , Q, R foot of altitudes, and D, E,
F intersections of tangents to the circumcircle in A, B, C. Then <)AQR =
<)CBA = <)CAE, so RQ ‖ EF . Therefore respective sides of trianglesDEF
and PQR are parallel, so there exists homothety transforming one of them
to another.
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Definition. Center of this homotethy, which is intersection of lines DP , EQ
and FR, is a triangle center X25 (in this chapter we will denote it as X for
simplifying notation).

4.1 Properties

Denote center of the circumcircle as O, while intersection of tangent to this
circle in A (ie. DE) with BC as T .

Theorem 4.1. The following properties hold:

1. FQ, RE, AO are concurrent.

2. FL, EM , AX are concurrent.

3. Quadrilateral ELMF can be inscribed in circle with center lying on
AX.

4. Projection of T onto AX lies on the circumcircle.

5. Isogonal conjugate of X is isotomic conjugate of H.

6. X lies on Euler line.

Proof. 1. Let S be intersection of AO with RQ. Since RQ ‖ EF , it
suffices to prove that FA

EA = QS
RS . AO ⊥ EF , therefore also AO ⊥ RQ
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and S is a foot of altitude in triangle RAQ. Since triangles CAB and
RAQ are similar, QS

RS = BP
CP . If we proved that triangles FPB and

EPC are similar, we will get

AF

AE
=
BF

CE
=
BP

CP
=
QS

RS
,

which we wanted to prove.

Observe that <)PBF = 180° − <)DBC = 180° − <)BCD = <)ECP .
Therefore it’s enough to prove that PT is external bisector of angle
EPF . This is indeed true – locus of such points Z, that ZT is external
bisector of angle EZF , is Apollonius circle with foci E, F passing
through T . Since (A, T ;E,F ) = −1, AT has to be its diameter, while
<)APT = 90°, thus P lies on this circle.

C

E

P

O

S

T

A

F

R

Q

B

2. Denote intersection of FL and EM as Y , while of FQ and ER as Z.
Observe, that defining O as intersection of EL with FM , we can ignore
all information we have except for collinearities and concurrences which
hold from definitions or first item of our theorem. Then without loss of
generality we may assume EF is the line at infinity. In this situation
quadrilaterals MOLY and RXQZ are parallelograms, and lines RM ,
LQ, OZ are parallel. Let U be the center of segment RQ, while V
center of LM . If U = V , segment XY is reflection of ZO with respect
to V , so it’s parallel to this segment, which we wanted to prove. If
it isn’t the case, UV is a medial line in trapezoid RQLM , thus it is
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parallel to its base, and since it’s also "medial line" in XZOY , and it’s
parallel to OZ, it must be also parallel to XY .4

X

O

Q

L

M

R

Y

Z

V

U

A EF

3. In inversion with respect to circumcircle F is mapped to M , and E to
L, so OF · OM = OE · OL = R2 and from power of a point theorem
EFML is inscribed in a circle. Let J be its center. Reflect E and
F with respect to J to get Э and Ф. Since <)AMF = 90°, points M ,
A, Ф are collinear. Thus from Pascal theorem for hexagon FLЭEMФ
lines AJ , FL, EM concur. But from item 2 of the theorem also AX,
FL, EM concur. Therefore J lies on AX.

4Alternative proof: using Dual Desargues Involution Theorem for quadrilaterals with
sides (EQ,ER,FQ, FR) and (EL,EM,FL, FM)) for point A respective involutions will
be the same, and using part 1 of the theorem AO is transformed to AX in it.
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4. Reflect A with respect to E and F , to get Б and Ц. Let CЦ intersect
BБ in W . Quadrilateral BCБЦ is the image of MLEF in homothety
with center A and scale 2, so W lies on AX from item 2, moreover this
quadrilateral is inscribed in circle Ω, which center J ′ lies on AX (from
item 3), and additionally <)ABЦ= <)БCA = 90°. Let A′ be reflection
of A with respect to O. Then BЦ intersect CБ in A′, so from Brocard
Theorem [5] A′T is a polar line of W with respect to Ω. Therefore
J ′W ⊥ A′T , but J ′, A, W and X are collinear, so AX ⊥ A′T . This
means that intersection of these lines is at the same time projection of
T onto AX, and it lies on the circumcircle of ABC (since AA′ is its
diameter).

Б

Ц

C

A′

W

J ′

T B

A
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5. Let N be such point that ABCN is an isosceles trapezoid with base
BC, while G be projection of T onto AX. Consider transformation
f being composition of inversion with center A and radius

√
AB ·AC

with reflection across internal bisector of angle BAC. Then f(B) = C,
f(C) = B, line BC is mapped to circumcircle and vice versa. Moreover
<)TAB = <)ACB = <)CAN , so f(T ) = N , and circle with diameter
AT is mapped to line through N perpendicular to BC. Let G′ = f(G)
and X ′ = f(X). G′ is projection of N onto BC, thus BP = G′C.
Therefore AG′ (the same as AX ′) is isotomic conjugate of AH, and
isogonal conjugate of AX.

C

T

B G′

G

A N

6. Denote center of nine point circle as O′, and circumcenter of DEF
as И. Since X is a center of homothety transforming PQR to DEF ,
O′ must be mapped to И, therefore these three points are collinear.
Moreover DEF is the image of KLM in inversion with respect to
circumcircle, so also O, O′, И are collinear. This means that X lies on
O′O, which is Euler line of ABC.
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In particular from item 2 and proof of Theorem 3.1 follows that H(X2) =
X25, because EF is isogonal conjugate of line parallel to BC through A.

5 Other special cases

5.1 P = X1

Case of P being incenter was de facto considered inside the proof of Theorem
3.1, since we transformed statement of the problem to situation in which Q
jest is the incenter of ABC. We then proved that H(X1) isogonal conjugate
of intersection of lines IAK, IBL and ICM . Similarity 4BIAC ∼ 4IBIAIC
shows that this intersection is Lemoine point of IAIBIC , thus point X9, and
its isogonal conjugate is X57, so H(X1) = X57.

5.2 P on the circumcircle

Since, as we’ve observed in Section 2, equation of the circumcircle is a2xBxC+
b2xCxA + c2xAxB = 0, if P lies on the circumcircle, H(P ) is X2. It can also
be justified geometrically – if Q = P ∗, tangents in B and C to isogonal
conjugate of EF pass through Q, therefore they are parallel – thus K is the
center of this conic.

That also means, that reflection of A with respect to K lies on this conic,
and thence intersection of tangents in B and C to circumcircle lies on EF .
In particular pole of EF lies on BC. Since P in this property has a role
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symmetric to that of A, B and C, we can also say that pole of EF lies on
AP , which gives a proof of Brocard theorem without use of cross-ratio.

K

P

A

B C

E

F

5.3 P = Xn

Comparing barycentric coordinates of first fifty triangle centers in ETC and
obtained in Geogebra, we can obtain results as in the following table:

Xn H(Xn)

1 57
2 25
3 459
4 394
6 2
9 1422
19 6513
25 6340
31 6384

Lack of H(X7) is particularly interesting, since in this case lines DE,
EF , FD has a more natural interpretation than for example for P = X3.

5.4 Fixed point is unconstructible

Natural question about existence and number of solutions of H(P ) = P is
answered by the following theorem:
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Theorem 5.1. For any triangle there exists exactly one such P thatH(P ) =
P ; this point cannot be obtained in a classical construction.

Proof. Let P ∼ [ a
2

xA
: b2

xB
: c2

xC
]. We want P ∼ [ xA

xB+xC−xA
: xB

xC+xA−xB
:

xC
xA+xB−xC

], therefore

x2A
a2(xB + xC − xA)

=
x2B

b2(xC + xA − xB)
=

x2C
c2(xA + xB − xC)

.

Observe that these expressions are homogenous and have nonzero degree, so
by apprioprate scaling coordinates of P we may assume that they are all
equal to 1. Denote yA = xA

a , yB = xB
b , yC = xC

c . Then y2A = xB + xC − xA
i y2B = xC +xA−xB, thus y2A + y2B = 2xC = 2cyc. Denote t = y2A + y2B + y2C .
Then

t+ a2 = y2A + (y2B + y2C) + a2 = y2A + 2ayA + a2 = (yA + a)2

therefore


yA =

√
t+ a2 − a

yB =
√
t+ b2 − b

yC =
√
t+ c2 − c

t = y2A + y2B + y2C = 3t+ 2a2 + 2b2 + 2c2 − 2a
√
t+ a2 − 2b

√
t+ b2 − 2c

√
t+ c2

Where the last expression after cancelations becomes

t+ a2 + b2 + c2 = a
√
t+ a2 + b

√
t+ b2 + c

√
t+ c2

Clearly t as a sum of three squares, from which at least one is nonzero, has
to be positive, so solution t = 0 doesn’t correspond to any point P .

Observe that derivative of a
√
t+ a2 is a

2
√
t+a2

6 1
2 . Therefore if any of

this roots was negative (which corresponds to P lying outside the triangle),
left hand side will have derivative equal to 1, while right hand side strictly
less than 1. That means that left hand side will be negative for all positive t.
However if all of the roots were positive, right hand side is a concave function,
where its derivative in zero is greater than 1, so the line will intersect it in
exactly one point (wherein that point exists because for large t left hand side
is greater than right).

It’s left to justify nonconstrutibility. For any constructible numbers a, b
numbers a+b, a−b, ab, a

b are also constructible (cases of sum and difference
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are obvious, remaining ones can be solved for example using power of point
theorem). If P was constructible, so would be some of its possible barycentric
coordinates, for example

[pA : pB : pC ] =

[
1 :

AF

FB
:
AE

EC

]
(from Lemma 2.1 they are indeed correct). Therefore also coordinates of

Q = P ∗ are constructible, denote them as [qA : qB : qC ]. As we have proved,
value of

q2A
a2(qB + qC − qA)

is independent of permutation of vertices, so we may divide coordinates
by this value (which is constructible too), obtaining xA – in particular xA,
xB, xC are constructible. From this we may easily construct yA, yB, yC , and
eventually t.

If alleged construction was working, in particular we could use it for
triangle with a = b = 2, c = 1 (which is easy to construct if one have unit
segment). Then t satisfies equation

t+ 9 = 4
√
t+ 4 +

√
t+ 1

Squaring both sides

t2 + 18t+ 81 = 17t+ 65 + 8
√

(t+ 4)(t+ 1)

Moving 17t+ 65 to the left hand side, and then squaring we get

t4 + 2t3 + 33t2 + 32t+ 256 = 64t2 + 320t+ 256

Moving to one side and using t 6= 0

t3 + 2t2 − 31t− 288 = 0

If t is a constructible number, degree of its minimal polynomial must be a
power of two fromWantzel’s theorem. In particular above polynomial cannot
be the minimal one of t, so it must be reducible. Of course such product
has to contain linear factor, so this polynomial needs to have a rational
root. From rational root theorem this root must be an integer divisor of 288.
Moreover Sturm sequence of this polynomial is P0(x) = x3+2x2−31x−288,
P1(x) = P ′0(x) = 3x2+4x−31, P2(x) = 1

9(194x+2530), P3(x) = −4018176
9409 , so

from Sturm theorem for interval (−∞,∞) it has exactly one real root. Since

22



its value in 6 is −186, and in 8 is 104, this root must lie in interval (6, 8),
in particular it cannot be an integer divisor of 288. It gives a contradiction
with constructibility of P .

As far as author knows, this point hasn’t been yet described in ETC. Its
barycentric coordinates can be deduced from the proof to be equal to

a√
t+ a2 − a

:
b√

t+ b2 − b
:

c√
t+ c2 − c

where t is again the only positive solution of

t+ a2 + b2 + c2 = a
√
t+ a2 + b

√
t+ b2 + c

√
t+ c2

These coordinates are equivalent to

a2 + a
√
t+ a2 : b2 + b

√
t+ b2 : c2 + c

√
t+ c2
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